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The advent of single-cell sequencing has been revolutionary to

the field of cancer genomics. Perfectly suited to capture

cancer’s heterogeneous nature, single-cell analyses provide

information bulk sequencing could never hope to uncover.

Many mechanisms of cancer have yet to be fully understood,

and single-cell approaches are showing promise in their

abilities to uncover these mysteries. Here we focus on the most

recent single-cell methods for cancer genomics, and how they

are not only providing insights into the inner workings of cancer,

but are also transforming individualized therapy and non-

invasive monitoring and diagnosis.
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Introduction
Genomic analysis has been widely applied in cancer

studies. The identification of genomic, epigenomic,

and transcriptomic changes in cancer has led to precise

classification, biomarker discovery, and mechanical

understanding of cancer, and has played an essential part

in cancer diagnosis, monitoring, and treatment [1]. How-

ever, until recently, bulk sequencing has been the only

viable option for cancer genomic analysis. One major

limitation is that bulk sequencing cannot detect the

heterogeneity within a tumor. This limitation has impor-

tant clinical consequences. For example, cancer is often

composed of multiple clones, and the most aggressive

clone is difficult to identify and target since it may not be

the one that metastasizes.

Throughout every stage of cancer, cells accumulate dis-

tinct mutations, which define the further evolution and

progression of the disease. It is commonly viewed that

cancer originates from an accumulation of mutations in
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oncogenes and tumor suppressors such that cell growth

becomes unregulated and invasive [2]. The progeny of

these cells in turn accumulate further mutations and

selective pressures drive clonal evolution. The cancer

will eventually metastasize, spreading to other parts of

the body through the circulatory or lymphatic systems to

form further distinct subpopulations. In addition, targeted

cancer therapy may drive further evolution and eventu-

ally lead to drug resistance.

The recent advent of single-cell sequencing has revolu-

tionized the field of cancer genomics, opening the door to

a vast number of possibilities (Table 1). From the ability

to resolve intra-tumoral heterogeneity [10�,17��,27�,34��],
map clonal evolution [50,51], and track the development

of therapy resistance [10�,58�], to the capacity to analyze

rare tumor cell populations such as tumor stem cells and

circulating tumor cells [47,48], single-cell techniques

have opened new avenues for cancer research. A better

understanding of the mechanisms of cancer can in turn

inform more effective and personalized treatments.

In this paper, we review recent progress in single-cell

analysis techniques and their applications in cancer geno-

mics (Figure 1), focusing on topics that have not been

covered by previous reviews [3–6].

Intra-tumor genome sequence heterogeneity
Understanding the genomic heterogeneity of cancer cells

first and foremost necessitates methods for single-cell

DNA sequencing. The earliest developments for sin-

gle-cell genomics involve whole genome amplification,

providing ample amounts of DNA for subsequent

sequencing. Degenerate oligonucleotide primed PCR

(DOP-PCR) is appropriate for CNV detection, with

low coverage but uniform amplification [7]. Multiple

displacement amplification (MDA) is a linear amplifica-

tion method capable of higher coverage through the use

of Phi-29 polymerase, making it suitable for SNP detec-

tion [8]. MALBAC (multiple annealing and looping-

based amplification cycles) combines MDA and PCR

for a high coverage, uniform amplification method suit-

able for either CNV or SNP detection [9]. These methods

have been extensively applied to the characterization of

intra-tumor CNVs and SNPs in various cancer types.

However, one major limitation of the aforementioned

methods is that spatial information is lost as soon as

single cells are isolated. Such information is integral to

understanding the interaction of the cell with its micro-

environment and may prove valuable for evaluating

drug responsiveness. Recently, a new technology,
www.sciencedirect.com
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Table 1

A summary of relevant single-cell methods and their applications to cancer

Method type Specific methods Application to cancer genomics Refs.

Experimental methods

Single-cell whole

genome amplification

DOP-PCR, MDA, MALBAC Used in conjunction with next-generation

sequencing to detect intra-tumor CNVs and SNPs.

[7–9]

Single-cell spatial

genomics

STAR-FISH Detects the spatial distribution of intra-tumor CNVs

and SNPs. Can be combined with longitudinal

analysis to reveal migratory cells.

[10�]

Single-cell

transcriptome

amplification

Smart-seq, Tang et al. method,

single-cell qPCR

Identifies cancer-specific gene expression

signatures, cancer cell types, alternative-splicing

events.

[11–13]

Single-cell spatial

transcriptomics

smFISH, SeqFISH, MERFISH,

FISSEQ, TIVA

Can provide spatially-resolved gene expression

signatures in tumors. Has potential applications in

tracing cell migratory paths and locating tumor-like

stem cells.

[16,17��,18�,19,20�,21,22]

Single-cell DNA

methylomics

scRRBS, PBAT Enables the discovery of differential methylation in

cancer cells. Potential for broadening

understanding of phenotypic plasticity of cancer

cells.

[25,26,27�]

Single-cell chromatin

accessibility

ATAC-seq, Pico-Seq Can give insight into the differential binding of

transcription factors in cancer cells.

[29�,30�,31]

Chromosome

conformation capture

Hi-C, ChIP-seq Potential for understanding the mechanisms of

cancer heterogeneity through mapping

transcription factor-regulatory element interactions.

[32,33]

Simultaneous multiple

single-cell omics

G&T-seq, scTrio-seq, Darmanis

et al. method

Provides an integrated view of intra-tumoral

heterogeneity through measuring direct

interactions between genomic, transcriptomic,

epigenetic, and proteomic variation.

[34��,27�,36�]

Computational methods

Single-cell spatial

transcriptomic

inference

Seurat, Achim et al. method Infers cell location through scRNA-seq data and an

in situ RNA reference map of several landmark

genes, enabling mapping of intra-tumor spatial

heterogeneity.

[37�,38]

Pseudo-time ordering Monocle, TSCAN, Waterfall, SCUBA,

Wanderlust, Wishbone

Projects gene expression values from a single time-

point to a continuous trajectory over cell

differentation. Potential use in understanding

differentiation from stem-like cancer cell to matured

cancer cell.

[39,40–43,44�,45]

Rare cell-type detection RaceID, StemID, GiniClust Potential use in the detection of circulating tumors

cells and stem-like cancer cells.

[46–48]

Clonal evolution

inference

SCITE, OncoNEM Builds lineage trees for understanding evolutionary

events such as the development of therapy

resistance.

[50,51]
STAR-FISH (specific-to-allele PCR-FISH) [10�], has

been developed which can detect the spatial distribution

of both SNVs and CNVs using a combination of in situ
PCR and FISH. PCR primers are built to target mutant

and wild type mRNAs, one gene at a time. Amplification

is followed by hybridization of fluorophores to a 50 over-
hang built into each probe. Janiszewska et al. use their

method to study the commonly reported His1047Arg

mutation in PIK3CA and ERBB2 (commonly known as

HER2) amplification in HER2+ breast cancer, before and

after chemotherapy. They were able to identify changes

in mutational frequency of mutated cells, which help gain

an understanding of the development of drug resistance

in HER2+ breast cancer [10�]. When combined with

longitudinal analysis, this method was used to pinpoint
www.sciencedirect.com 
migratory cells [10�]. Currently, the technology can only

be used to detect the location of known mutations.

The introduction of spatial methods to single-cell cancer

genomics allows genomic heterogeneity to be mapped in

space. This presents new opportunities in studying cell-

to-cell interactions, and in identifying migratory cancer

cells and their roles in metastasis.

Intra-tumor transcriptomic heterogeneity
Like single-cell genome analysis, the first efforts in

single-cell transcriptomics were in the amplification

of the transcriptome to allow for quantification and

sequencing of the transcriptome. Whole transcriptome

amplification methods include poly-A tailing methods
Current Opinion in Genetics & Development 2017, 42:22–32
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Single-cell methods provide novel insights into every stage of cancer progression, from primary tumor development to metastasis, to the

development of drug resistance.
[11] and template-switching methods like Smart-seq [12].

Targeted gene expression profiles can also be quantified

by multiplexing qPCR with high sensitivity [13].

In conjunction with single-cell RNA sequencing and

qPCR, these methods have been used in various cancer

studies. Cancer-specific gene expression signatures and

alternative-splicing events have been identified for mel-

anoma [12]. Gene expression signatures have led to the

identification of cancer cell types, such as cancer stem

cells [14]. The relative contributions of clonal evolution

and multi-lineage differentiation in transcriptomic het-

erogeneity have been studied in the context of colon

cancer [15].

Recent technologies have been developed to quantify

gene expression levels in situ, thereby preserving spatial

information. Here we review recent single-cell spatial

transcriptomic methods and their potential for future

use in cancer studies. These methods share the same

fundamental principle as single-molecule fluorescence in
situ hybridization (smFISH), whereby fluorescently-

labeled DNA oligonucleotide probes are hybridized to

their complementary target mRNA, and are then identi-

fied via fluorescence microscopy [16,17��]. The newer

techniques described below have greatly enhanced

detection efficiency and throughput.
Current Opinion in Genetics & Development 2017, 42:22–32 
SeqFISH (sequential FISH) is an adaptation of smFISH

that uses sequential hybridization to allow for multiplex-

ing [18�]. Each mRNA is assigned a unique sequence of

fluorophores that create a barcode through which each

mRNA can be decoded. In the first round of this process,

probes that target the same mRNA are labeled with the

same fluorophore. These probes are hybridized, imaged,

and then purged. In the next round, the same probes are

labeled with a different fluorophore, and the same

sequence of steps is followed. Several rounds of this

create a unique barcode of colors for the particular

mRNA. Each probe set targeting a particular mRNA is

labeled with a unique barcode in this way. For F fluor-

ophores and N hybridization rounds, this means FN

mRNAs can be visualized. As this number scales up

rapidly with an increasing number of fluorophores and

hybridization rounds, this technique can potentially be

used to sequence all known genes with limited numbers

of fluorophores and hybridization cycles. The authors

initially applied this method to immobilized yeast cells

and mouse embryonic stem cells [18�], but have since

extended the method so that it is now applicable to deep

tissues such as the brain [19].

MERFISH (multiplexed error-robust FISH) is a similar

approach which also allows for error correction by using a

smart choice of barcodes [20�]. Specifically, barcode
www.sciencedirect.com
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sequences are chosen to include only those that are

separated by a certain Hamming distance (Hamming

distance = number of changes in a barcode sequence

required to transform one sequence into another). Since

not all possible barcodes encode a particular mRNA, this

encoding scheme provides a means to error detection and

correction. The authors use this approach to simulta-

neously measure 1001 genes in human fibroblast cells.

Two fluorophores and 14 hybridization rounds allow all

encoding sequences to be separated by a Hamming

distance of 2 [20�]. Of note, these authors show that their

barcode design helps reduce the error rate significantly.

FISSEQ is another in situ technique which is based on

sequencing. RNA is first reverse-transcribed and ampli-

fied [21]. The amplicons are crosslinked to the cellular

matrix and sequenced by using the SOLiD SBL

(sequencing-by-ligation) technique. The method has

been applied to a simulation of the wound healing

response in primary fibroblasts where the authors found

differentially expressed genes between migrating cells

and contact-inhibited cells [21]. Such a method could

similarly be applied to find differentially expressed genes

in migratory vs. non-migratory tumor cells.

In addition, transcriptomic profiles can also be measured

in vivo by using a technology called TIVA (transcriptome

in vivo analysis). In this approach, a photoactivatable

biotin-labeled TIVA-tag is inserted into live cells,

attached to mRNA upon selective photoactivation, and

recaptured via streptadavin beads. The captured mRNA

is subsequently sequenced [22]. TIVA was used on live

mouse and human brain tissue, as well as mouse brain

cells in culture. A comparison of live and culture mouse

brain cells shows significant differences in gene expres-

sion levels, emphasizing that cells removed from their

natural environment may not be representative of the

same cells in vivo [22].

The aforementioned methods give increasingly multi-

plexed ways of spatially resolving gene expression pat-

terns. While most of the applications to date have been

limited to cell culture, we expect that soon they will be

applicable to tissue samples. If they can be adapted to

tumor cross-sections, these methods will have great

impact on investigating the cancer progression path.

For example, the location of tumor-like stem cells could

be mapped within the tumor. If longitudinal measure-

ments are taken, cell migratory paths may be traced.

Intra-tumor epigenetic heterogeneity
Epigenetics plays an important role in regulating gene

expression in cancer, and exploring the heterogeneity of

epigenetic patterns may aid in understanding underlying

transcriptomic heterogeneity. As a dynamic process, epi-

genetics may contribute to the phenotypic plasticity of

cancer cells, for example aiding in the differentiation of
www.sciencedirect.com 
cancer stem cells [23]. Studies have shown abnormally

low levels of global DNA methylation along with hyper-

methylation in specific regions, such as tumor suppressor

gene promoter regions, giving strong evidence for the role

of epigenetic aberrations in cancer proliferation [24].

The characterization of intra-tumor epigenetic heteroge-

neity has been less extensively studied due to its techni-

cal difficulty. Nonetheless, multiple epigenetic methods

have recently been adapted for single-cell purposes.

Determining DNA methylation patterns has traditionally

been performed by bisulfite sequencing methods, but

bulk techniques have performed poorly in the single-cell

setting due to DNA degradation during bisulfite conver-

sion. Methods have adapted bisulfite sequencing for

single-cell, including scRRBS (reduced representation

bisulfite sequencing) [25] and PBAT (post-bisulfite

adapter-tagging) [26]. In each, a modified version of

bisulfite sequencing is applied to each cell individually.

ScRRBS mitigates the issue of high DNA loss by repla-

cing the multiple purification steps prior to bisulfite

sequencing with a single-tube reaction. A restriction

enzyme that recognizes CpG islands is used to cut the

genome, selecting CpG island regions for subsequent

conversion and sequencing. By sequencing only these

regions, this method provides low-cost but low-coverage

sequencing [25]. ScRRBS has been applied to human

hepatocellular carcinoma tissue in conjunction with

simultaneous transcriptome sequencing (discussed in

greater detail in the next section) [27�]. Methylation

levels at all CpG sites were measured and subsequently

used to cluster the tissue into two subpopulations via

unsupervised hierarchical clustering. A large amount of

heterogeneity was found between and within these sub-

populations. Interestingly, when the same clustering

method was applied using CNV patterns, an identical

clustering was found [27�].

PBAT is a more unbiased whole-genome approach that

addresses the issue of bisulfite-conversion-induced DNA

degradation by performing suitable library preparation

after bisulfite sequencing. Traditionally, adapter-tagging

is performed before bisulfite conversion and sequencing

templates become degraded, but switching the order of

these events alleviates this problem [26,28]. In an appli-

cation of PBAT, differential methylation of distal regula-

tory elements was discovered in mouse embryonic stem

cells [28]. These elements cannot commonly be captured

by scRRBS, making it promising for higher-coverage

cancer methylation studies.

Chromatin structure also plays an important role in gene

regulation. Most transcription factors can only bind to

open chromatin regions, whereas a small number of

pioneer factors may bind to closed chromatin, opening

it up so that other factors can bind. The genome-wide

landscape of chromatin accessibility can be measured by
Current Opinion in Genetics & Development 2017, 42:22–32



26 Cancer genomics
using either ATAC-seq (assay for transposase-accessible

chromatin) [29�,30�] or DNase-seq [31]. The difference

between these two methods is the DNA-cutting

enzymes, corresponding to Tn5 and DNase I, respec-

tively. Both methods have been adapted to single-cell

analysis. Two single-cell methods have modified ATAC-

seq. A combinatorial indexing approach [29�] tags nuclei

with unique barcodes so they can then be grouped and

processed together. Groups of nuclei are placed in wells,

barcoded, and then passed through a second set of wells

and barcoded again. Given that each nuclei is highly

likely to pass through a unique combination of wells,

the barcoding is overwhelmingly cell-specific [29�]. In a

microfluidic approach [30�], cells are captured and

assayed separately. The microfluidic technique has been

used to find a high variability of transcription factor motif

accessibility in cancer cell lines [30�]. For DNase-seq, a

single-cell method called Pico-Seq [31] sorts cells using

FACS before DNase I treatment. To prevent a large loss

of digested DNA during subsequent library preparation,

circular carrier DNA is added after digestion. This DNA

will not be amplified in the PCR that follows due to its

incompatibility with the adaptor ligation process. Of note,

the authors applied their method to formalin-fixed paraf-

fin-embedded follicular thyroid cancer patient tissue and,

in one patient, found a SNV that prevents the binding of

tumor suppressor protein p53 [31].

The aforementioned methods have started to provide

new mechanistic insights into cancer heterogeneity. In

addition, two additional single-cell methods, Hi-C and

ChIP-seq, have been recently developed and show poten-

tial for use in future cancer epigenetic studies. A type of

chromosome conformation capture that quantifies inter-

actions between genomic loci, Hi-C can be used to find

trans-regulatory elements and their targets [32]. ChIP-

seq, which characterizes interactions between DNA and

DNA-binding proteins, can determine transcription fac-

tor-regulatory element interactions [33].

Simultaneous multiple omic analysis
Ideally, the different omic approaches should be applied

to study a particular tumor so that the information can be

integrated. However, this multiple-omic approach is

much more technologically challenging. We review some

recent studies in this direction.

Simultaneous transcriptomic and genomic sequencing for

single cells has recently been achieved by the G&T-seq

method [34��]. Cells are first isolated and lysed to release

mRNA and genomic DNA. Poly-A mRNA is then sepa-

rated from genomic DNA through the use of biotinylated

oligo-dT primers coupled with streptavidin-coated mag-

netic beads. The primers are hybridized directly to the

poly-A tail, and subsequently recruited by streptavidin-

coated magnetic beads through a strong biotin-streptavi-

din interaction. Standard single-cell techniques can then
Current Opinion in Genetics & Development 2017, 42:22–32 
be used to separately sequence the isolated mRNA and

genomic DNA [34��].

The ability to measure transcriptomic and genomic land-

scapes in the same cells opens a window into understand-

ing the direct effect of genomic variation on transcrip-

tomic variation. Macaulay et al. use their method on

HCC38 breast cancer cells to discover the chromosomal

rearrangement responsible for the fusion transcript

MTAP-PCDH7, found in a majority of HCC38 cells

[34��]. They also conclude that a trisomy found in a

subset of HCC38_BL (B lymphoblastoid) cells results

in proportionally increased mRNA expression in these

cells [34��]. To date, the application of G&T has been

limited to cell lines; however, it provides hope to analyze

the direct effect of copy number variants on transcript

levels in tumor samples in the near future.

An extension of this idea of concurrent sequencing has

been implemented via the scTrio-seq method [27�]. This

technique simultaneously sequences not only the

genome and transcriptome, but the DNA methylome

as well. In this method, separation of genomic DNA

and mRNA is performed through centrifugation of lysed

single cells, where a special centrifugation technique

allows for the separation of cytoplasm from intact nuclei.

The mRNA found in the cytoplasm is sequenced sepa-

rately from the genomic DNA, which is subjected to

scRRBS, providing methylomic and genomic data. The

ability to simultaneously quantify genomic, transcrip-

tomic, and epigenomic changes in the same cells has

provided new insights into the gene expression regulatory

mechanisms. The authors use their method in the analy-

sis of the heterogeneity of human hepatocellular carci-

noma. Their results corroborate those of Macaulay et al. in

that CNV gene dosage is found to have a proportional

effect on transcript levels. DNA methylome results, how-

ever, show that CNVs have no similar effect on methyl-

ation levels [27�].

The transcriptome is often used as a proxy for protein

levels, as single-cell proteomic analyses have not reached

the degree of multiplexing that single-cell transcriptomic

analyses have. However, mRNA molecules have shorter

half-lives than proteins, and previous studies have shown

that the mRNA and protein levels may not correspond

well [35]. However, their relationship remains unclear at

the single-cell level. Recently, Darmanis et al. have devel-

oped a new technique to simultaneously measure the

transcriptomes and proteomes of single cells [36�]. This is

achieved by the splitting of cell lysate and independent

processing of each fraction, much like the methods above.

The mRNA fraction is subjected to qPCR, and the

protein fraction to proximity extension assay (PEA).

During PEA, pairs of oligo-labeled antibodies bind to

target proteins, where each pair’s oligos are complemen-

tary to one another and bind upon being brought in
www.sciencedirect.com
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proximity, creating a PCR amplicon, which is then quan-

tified with PCR. The authors apply this technique to

quantify cancer pathway proteins that were determined a

priori to be of relevance in BMP4-treated glioblastoma

cells, and find poor correlation between mRNA and

protein levels in these cells. They conclude that protein

levels are better predictors of treatment response, leading

to the conclusion that perhaps single-cell transcriptomic

methods are not sufficient in determining treatment

response [36�].

Computational methods for analyzing single-
cell genomic and transcriptomic data
With the advent of single-cell technologies comes the

necessity for new computational methods to process the

data collected. These methods fall into two categories.

First are methods that modify bulk sequencing methods

to adjust for nuances unique to single-cell data: sparse,

noisy data that lacks technical replicates. The second set

of methods implement new applications possible only

with single cell data. Here we mention methods of the

second variety which are of special relevance to cancer

genomics. Other methods are extensively covered in

previous reviews [5,6].

Inference of spatial patterns

As described above, exciting technologies have been

developed to profile single-cell gene expression patterns

in situ. Computational methods are still lacking to sys-

tematically detect the spatial patterns and classify sam-

ples using such patterns.

In some cases, spatial patterns can be inferred by inte-

grating single-cell RNA-seq data collected from isolated

cells with in situ expression patterns of a small number of

landmark genes [37�,38]. Location of the cells is inferred

through correlation between their expression levels and

those of the in situ data landmark genes. This approach

has been used in developmental biology for the analysis

of embryos, where cells are predictably distributed across

the dorsal-ventral and animal-vegetal axes [37�]. An anal-

ogous method has been used to map cells back to annelid

brain regions [38]. However, there is a possibility for

difficulties in measuring spatial heterogeneity in tumors

due to their typical lack of spatial patterning [37�].

Pseudo-time ordering with bifurcation

Single-cell RNA-seq data is only capable of producing a

static view of gene expression levels within cells. Pseudo-

time ordering computational methods now allow for a

window into continuous changes in gene expression

levels, which have thus far given insights into the tran-

scriptional kinetics of cell differentiation. Making the

assumption that cells at various stages of differentiation

can be found in one scRNA-seq dataset, a time series of

transcriptional changes is produced, onto which each cell

is mapped. Applying these methods to cancer data can be
www.sciencedirect.com 
used to track genes activated at various stages of differ-

entiation from cancer stem cell to matured cancer cell.

Monocle was the first of a series of pseudo-time-ordering

algorithms, and uses a combination of dimensionality

reduction and a minimal spanning tree (MST) algorithm

to build a differentiation trajectory [39]. Monocle2 has

since been released, which uses reverse graph embedding

and is capable of handling data from much larger scRNA-

seq experiments than before [40]. TSCAN (pseudo-time

reconstruction in single-cell RNA-seq analysis) was built

as an improvement upon the original Monocle method,

reporting more robust results. Instead of creating an MST

on all cells, cells are first clustered via hierarchical clus-

tering, and these clusters are used as the MST inputs [41].

A reduced space from which to build a trajectory allows

for more stable inference, hence more robust final results.

Waterfall is a similar method that also conducts clustering

before MST creation [42]. An alternative approach to

reconstruct pseudo-time is by fitting the data by a princi-

pal curve [43]. This method has been applied to analyzing

CyTOF data.

Cell differentiation often involves bifurcation, where two

or more distinct cell-types may emerge from a common

stem/progenitor cell population. If the temporal informa-

tion is known, SCUBA can be used to detect bifurcation

events [43]. However, in most cases, the temporal infor-

mation is unavailable. Some pseudo-time methods also

build bifurcation events into their models. Instead of

assuming one trajectory for all cells, these methods allow

for a branching trajectory to account for differentiation

into multiple cell types. One method, Wishbone [44�], is

an updated version of Wanderlust [45] with the added

ability to account for bifurcations. The initial Wanderlust

algorithm represents cells as nodes in a graph, where the

shortest path between two nodes represents their pheno-

typic distance. An early cell is chosen and distances are

calculated between each cell and the early cell. To adjust

for the fact that longer paths are noisier than shorter paths,

random waypoint cells are introduced, and each cell’s

position is iteratively refined with respect to these way-

point cells. Repeating the graph-building process several

times and averaging cell positions from all these graphs

mitigates ‘short circuits,’ or edges that occur erroneously

between developmentally distant cells [45]. Wishbone

updates this algorithm by introducing a step to identify

branch points through discrepancies in waypoint dis-

tances. Additionally, ‘short circuits’ are avoided via a

different approach, where the initial graph is rebuilt in

a reduced space to remove noise [44�].

The ability to order cells of complex lineage relationship

may have important applications in development.

Already, these methods have been used to study the

development of cells such as human B lymphocytes

[45] and human neural cells [42]. In the future,
Current Opinion in Genetics & Development 2017, 42:22–32
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pseudo-time ordering may be used in mapping the altered

mechanisms of cell development in cancer.

Rare cell-type detection

The detection of rare cell types is pertinent to cancer,

where the ability to identify circulating tumor cells

(CTCs), cancer stem cells, or drug resistant cells will

have important clinical implications. Most clustering

methods to date are only able to identify major cell

groups.

RaceID [46] is a method aimed at detecting rare cell types

from scRNA-seq data. Cells are first clustered into major

groups by k-means. Outliers of each cluster, which are

determined not to be a cause of technical or biological

noise, are then grouped into rare cell clusters based on

transcriptome correlation [46]. RaceID was recently

updated for more robust clustering, where the newer

RaceID2 [47] replaces k-means with k-medoid clustering.

Grün et al. have integrated RaceID2 into a stem-cell

detection algorithm named StemID, which uses the

identified cell clusters to guide inference of a lineage

tree. Stem cells are then defined by this differentiation

trajectory. In this manner, the authors were able to

classify stem cells from mouse bone marrow cells, and

predict novel pancreatic pluripotent cells [47].

GiniClust [48] is an alternative approach for detecting

rare cell-types, by using an innovative approach to choose

genes that are likely to be associated with rare cells types,

using a statistic called the Gini index. The high Gini

genes are identified and subsequently used as input into

DBSCAN (density-based spatial clustering of applica-

tions with noise) [49]. The authors used this approach

on both scRNA-seq and qPCR data. Among other find-

ings, they were able to discover a novel stem cell type

characterized by a high expression of ZSCAN4 in mouse

embryonic stem cells, and were able to identify rare

normal cells in glioblastoma primary tumor samples [48].

Clonal evolution inference

Cancer undergoes a process of clonal expansion and

selection that can be inferred through single-cell

sequencing data using computational tools. Two such

methods are OncoNEM (oncogenetic nested effects

model) [50] and SCITE (single cell inference of tumor

evolution) [51], which create tumor lineage trees from the

single-cell sequencing data. Building lineage trees can

guide understanding of the development of therapy resis-

tance; if a sample is taken post-treatment, we can infer a

timeline of mutational events that take place before,

during and after treatment. Furthermore, these methods

can identify mutations that occur early on in tumor

development and are propagated throughout each subse-

quent clone, and guide treatment targeted towards these

mutations. These two methods differ in their algorithms –

SCITE uses Markov chain Monte Carlo and OncoNEM
Current Opinion in Genetics & Development 2017, 42:22–32 
uses a heuristic search – but importantly, both implement

a probabilistic model instead of the traditional maximum

parsimony model. Single-cell sequencing data suffers

from a large amount of technical error as compared to

bulk data that can easily be propagated through subse-

quent tree-building methods. Using maximum likelihood

principles, SCITE and OncoNEM build sequencing error

estimation into their models to account for this [50,51].

Biological insights obtained through single-
cell analyses
Cancer stem cells

The cancer stem cell hypothesis postulates that there

exists a sub-population of self-renewing cells with differ-

entiation potential that serves to initiate and maintain the

larger tumor cell population. These cells are estimated to

make up less than 1% of the total tumor cell population

[52]. Single-cell techniques have provided a powerful tool

for identifying and molecularly characterizing cancer

stem cells.

As a starting point, Patel et al. [14] use scRNA-seq to

analyze the transcriptomes of cells from 5 human glio-

blastomas in search of glioblastoma stem-like cells (GSC).

The authors derive a transcriptome signature that corre-

sponds with ‘stemness’ by comparing the transcriptomes

of GSCs and DGCs (differentiated glioblastoma cells)

modeled in culture. They then use this signature to

identify GSCs in vivo, and find a continuous gradient

of stemness-indicating gene expression [14]. Lawson

et al. similarly identify stem-like cells in metastatic breast

cancer tumors by a stem-cell-like gene expression signa-

ture [53��]. Early stage metastases contain these stem-like

cells, while later stage metastases contain cells closer to

primary tumor cells in gene expression, supporting the

theory that as cancer progresses, tumor cells with stem-

like properties initiate and propagate metastatic tumors

[53��].

Circulating tumor cells

Single-cell analysis has also provided a powerful tool for

the detection and characterization of circulating tumor

cells, which are cells that are shed from the tumor into the

vasculature or lymphatics and circulate through the

bloodstream. Monitoring the presence of CTCs may be

used to track the evolution of tumors over time with a

simple series of blood tests. However, at an estimated

frequency of as little as 1 in 109 of all blood cells [54], it is

extremely challenging to capture and analyze these cells.

Because of the large amount of heterogeneity in these

cells, which may derive from the original tumor or any

metastases, single cell methods are necessary. The rarity

of these cells requires tools for isolation from hematologi-

cal cells. A common method involves identifying circu-

lating tumor cells (CTCs) through the presence of

EpCAM (epithelial cell adhesion molecule) – found in

epithelial cells but not blood cells – on the surface of the
www.sciencedirect.com
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cell. Separation of these cells from the blood is then

performed using magnetic beads coated with anti-

EpCAM antibody. Other recent methods have been

developed to overcome a major limitation of this method:

the expression of EpCAM is variable from tumor cell to

tumor cell, especially those in the epithelial-mesenchy-

mal transition. These alternative methods include isola-

tion of CTCs by microscopic imaging, cell size, and

passive capture through removal of all other blood cells.

Genomic and transcriptomic profiling of CTCs have been

applied to studying cancer progression. Ni et al. elucidate

the pathway of metastasis in lung cancer through the

whole-genome sequencing of CTCs from lung cancer

patients [55]. As these circulating tumor cells reproduc-

ibly share similar CNV patterns to the same patient’s

metastatic tumors, the CNV patterns of these CTCs can

be used as proxies for the metastatic tumors. These CNV

patterns are different from those of the primary tumors,

suggesting that metastasis may occur through a set of copy

number changes [55]. Several papers point to the

sequencing of CTCs as a tool for noninvasively tracking

the development therapy resistance. Miyamoto et al. and

Dago et al. study the progression of prostate cancer over

the course of androgen receptor inhibitor treatment, dis-

cussed in the next section [56,57].

Development of therapy resistance

The ability to detect mutations at a single-cell level has

lead to yet another possibility: tracking the development

of cancer therapy resistance. The main approach towards

this goal is longitudinal single-cell measurements before

and after various therapies. A common method for treat-

ing cancer is chemotherapy before a round of targeted

therapy; longitudinal data therefore may consist of mea-

surements before and after each of these events. Noting

differences in mutational frequencies over time gives

insight into how tumor cells respond to therapy and

the mechanisms by which they develop resistance. These

studies may in addition be used to validate two prevalent

theories of therapy resistance: adaptive resistance, in

which a mutation present at low frequency in the original

population is selected for during therapy and rises in

frequency, or acquired resistance, whereby resistance-

conferring mutations arise as a consequence of therapy.

One study evaluates the response of BRAFV600E mela-

noma to treatment with RAF or combined RAF/MEK

inhibitors in both cell culture and tissue [58�]. A compari-

son of scRNA-seq data from biopsies taken from patients

before and after treatment with either RAF or RAF/MEK

inhibitors finds that post-treatment tissues contain a

higher proportion of cells overexpressing AXL, a known

marker of resistance. A follow-up experiment in mela-

noma cell lines, in which cells are treated to increasing

doses of RAF/MEK inhibitors, also reveals an increase in

AXL-positive cells. These AXL-positive cells preexisted
www.sciencedirect.com 
in the treatment-naı̈ve sample and were selected for by

treatment, a demonstration of the adaptive resistance

mechanism [58�].

The Dago et al. and Miyamoto et al. studies mentioned

above use CTC tracking to analyze the development of

resistance to androgen receptor (AR)-targeted therapy in

prostate cancer patients [56,57]. Through whole-genome

sequencing of CTCs before and after treatment, the

former find the emergence of two distinct resistant sub-

populations with AR amplification. One of these subpo-

pulations is found to be a descendant of a clone found in

the therapy-naı̈ve population, indicating support for the

adaptive resistance hypothesis [56]. Miyamoto et al. use

scRNA-seq of CTCs to show the acquisition of hetero-

geneous resistance-conferring changes in the AR-inde-

pendent Wnt signaling pathway [57]. Both studies dem-

onstrate the relevance of CTCs in the non-invasive

monitoring of therapy resistance.

Authors of the aforementioned Janiszewska et al. paper

[10�] use their STAR-FISH technique to study the

implications of chemotherapy in the development of

resistance to subsequent HER2-targeted trastuzumab

therapy in HER2+ breast cancer patients. HER2 amplifi-

cation and frequency of the His1047Arg mutation in

PIK3CA were observed before and after chemotherapy

in HER2+ breast tumor samples. Chemotherapy is found

to result in an increased frequency of PIK3CA mutants

(known to be a determinant of resistance to trastuzumab)

and a decreased frequency of HER2 amplification (giving

trastuzumab less target sites). These results suggest that

trastuzumab may be ineffective for patients who have

already received chemotherapy. The spatial information

provided by the STAR-FISH method may also be infor-

mative in studying resistance, as the authors found that

chemotherapy increases the dispersion of cancer cells

with the PIK3CA mutation. This increased dispersion

may be an indicator of poor prognosis [10�].

A new study extends this type of study to single-cell

proteomic data [59]. Wei et al. collect proteomic data on

12 proteins and phosphoproteins in cells of a patient-

derived in vivo brain cancer glioblastoma model before

and after treatment with an mTOR kinase inhibitor.

Correlations between protein expression levels are then

used to build signaling networks, and these networks are

compared pre- and post- targeted therapy. The drug

decreases mTORC1/C2 signaling (the intended target),

but upon reaching a state of resistance, the signaling is

reactivated, once again an example of adaptive resistance.

In addition, upon reaching a state of resistance, new

correlations can be seen in the ERK/Src pathways. This

is an indication that increased signaling in these pathways

may promote downstream mTOR signaling, and conse-

quently that an effective targeted therapy must simulta-

neously target both pathways [59].
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Conclusion
Single-cell biology is a fast-evolving field. As discussed in

the paper, a lot of the technical and computational devel-

opment has been made in just a few years. These meth-

ods have greatly empowered researchers to systematically

interrogate the cellular heterogeneity within a tumor

especially in terms of spatial heterogeneity and multi-

omics integration. All the methods reviewed here share a

common goal: improving our understanding of tumor cell

heterogeneity for the purpose of informing personalized

cancer treatment.

Studying intra-tumoral heterogeneity and the spatial ori-

entation of subclones in the primary tumor via new spatial

transcriptome methods and simultaneous multiple omic

sequencing will allow for the proper drug targeting of the

subclones. Examining the nature of stem-like tumor cells

and the transcriptomic mechanisms required to give rise

to new tumor populations will give clarity to the origina-

tion of metastases. Targeting these stem-like cells could

hamper the spread of cancer throughout the body. Being

able to isolate and longitudinally sample CTCs will

permit non-invasive diagnosis and monitoring over the

course of treatment. Treatment approaches can be con-

stantly updated upon tracking the response and evolution

of CTCs throughout treatment. Finally, treatment resis-

tance can be prevented with a more accurate modeling of

the development of resistance to current drugs.

Much work remains to make these possibilities realities.

But as single-cell sequencing methods continue to

become cheaper, capable of higher coverage, and able

to process a greater number of cells faster, no doubt these

goals will become more and more attainable.
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